

Long-term Follow-up Results of a Multicenter First-in-Human Study of the Dual BCMA/CD19 Targeted FasT CAR-T GC012F for Patients with Relapsed/Refractory Multiple Myeloma

Juan Du¹, Hua Jiang¹, Baoxia Dong², Li Gao³, Li Liu⁴, Jian Ge⁵, Aili He⁶, Lu Li¹, Jing Lu¹, Xiequn Chen⁷, Yuezhang Chen⁷, Yuezhang Chen⁷, Yun Ye⁷, Hua Zhang⁷, Lianjun Shen⁷, Jia Liu⁷, Martina A. Sersch⁷, Weijun Fu¹ 1 Shanghai Changzheng Hospital, Shanghai; 2 Xijing Hospital, Xi'an; 3 The second Affiliated Hospital of Army Medical University, Chongqing; 4 Tangdu Hospital, Air Force Medical University, Xi'an, China; 5 The first affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; 7 Gracell Biotechnologies Ltd, Shanghai, China; 6 The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; 7 Gracell Biotechnologies Ltd, Shanghai, China; 6 The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; 7 Gracell Biotechnologies Ltd, Shanghai, China; 8 The second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; 9 The first affiliated Hospital of Anhui Medical University, Xi'an, China; 9 The second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; 9 The first affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; 9 The second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; 9 The second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; 9 The second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; 9 The second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; 9 The second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; 9 The second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; 9 The second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; 9 The second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; 9 The second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; 9 The second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; 9 The second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an Jiaoto

Background and Rationale

➤GC012F - a DUAL targeting BCMA/CD19 CAR-T for R/R Multiple Myeloma

- BCMA is universally expressed on malignant plasma cells ¹
- CD19 is expressed on both Multiple Myeloma (MM) cells and their progenitors²
- Targeting CD19 can trigger elimination of malignant cells by CAR-T³
- Our preclinical work demonstrated effective elimination of MM cells by BCMA/CD19 Dual CAR-T⁴

 \triangleright GC012F is manufactured on the FASTCARTM – platform enabling overnight manufacturing

Patient Demography

Table 1. Baseline Characteristics

Table 1. Daseline Characteristics						
Baseline Characteristics	Total (N=19)	Baseline Characteristi				
Median age, years (range)	55 (27-71)	Median prior regimens				
Male, n(%)	12 (63)	Median prior lines of th				
Type of myeloma, n(%)		Prior auto-SCT, n (%)				
IgG	8 (42)	Triple-exposed ^{c, d} , n(%)				
IgA	5 (26)	PI refractory				
IgD	3 (16)	IMiD refractory				
Light chain	3 (16)	anti-CD38 refractory				
Median years since diagnosis (range)	3 (1-10)	dPenta-exposed, n(%)				
High-risk profile ^a , n(%)	18 (95)	Primary refractory, n (%				
Double-hit ^b , n(%)	3 (16)	Refractory to last therap				

Median prior lines of therapy, n (range)		
	5	(2-9)
Prior auto-SCT, n (%)	7	(37)
Triple-exposed ^{c, d} , n(%)	18	(95)
PI refractory	18	(95)
IMiD refractory	17	(89)
anti-CD38 refractory	4	(21)
dPenta-exposed, n(%)		(63)
Primary refractory, n (%)		(16)
Refractory to last therapy, n (%)		(79)

Total (N=19)

^aBy mSMART 3.0; bBy presence two of del(17p), t(4;14), t(14;16), t(14;20), gain 1q, or p53 mutation

^cPI, IMiD and any other therapies including anti-CD38 antibody; ^d≥1 PI (Ixazomib and Bortezomib were approved in China), ≥1 IMiDs (only-Lenalidomide is approved for MM in China) and \geq 3 other anti-myeloma drugs of any other class;

Safety Profile

Table 2. TEAE, CRS and ICANS

N=19	All Grades (n,%)	Grade ≥3 (n,%)	N=19	CRS¹ (n,%)	ICANS# (n,%)
Hematologic TEAE* (≥ 25% All Grades)		Grade 0	1 (5)	0 (0)	
Neutropenia	15 (79)	15 (79)		· /	,
Lymphopenia	14 (74)	14 (74)	Grade 1-2	16 (84)	0 (0)
Leukopenia	13 (68)	13 (68)			
Thrombocytopenia	13 (68)	13 (68)	Grade 3 [#]	2 (11)	0 (0)
Anemia	8 (42)	7 (37)	Grade 4-5	0 (0)	0 (0)
Non-Hematolo	Grade + 3	0 (0)	0 (0)		
LDH increased	12 (63)	0 (0)	#CRS treated with Tocilizumab, vasopressors and dexamethasone		
Hypoalbuminemia	8 (42)	0 (0)	CRS any grade	Median (days)	Min, Max (days)
AST increased	7 (37)	5 (26)		(days)	(days)
Diarrhea	4 (21)	0 (0)	Time to onset	6	2,10
Lower respiratory tract infection	3 (16)	3 (16)	Duration	4	1,8
	No ICANS observed				

IND ICHINO ODSELVED

*AE were graded according to CTCAE v5.0, ¹CRS criteria, ASBMT consensus grading, AST Aspartate Aminotransferase, TEAE- treatment emergent Adverse Event, LDH Lactase dehydrogenase, CRS – Cytokine release syndrome, #ICANS – Immune effector cell-associated neurotoxicity syndrome

Study Design

¹IIT – investigator initiated trial

DL2: 2*10^5/kg

DL1: 1*10^5/kg

Efficacy: Response (data cut off Jan 12th 2021)

Months after infusion

Figure 2. Response assessment. At data cut off, the median time to follow up was 13.8 months (6.1-16.4). 19 patients

patients MRD- by flow cytometry $(10^{-4}-10^{-6})$ – earliest response d28 post infusion. Best response was MRD-sCR in 16/19

patients (84.2%). Median duration of response (DOR) not yet reached. In DL3 (n=9) 4 additional patients were response

evaluable for 6 month follow-up: 100% (9/9) of patients achieved MRD-sCR as best response, 87.5% (7/8) of response

Table 2. CAR-T quick expansion with long duration. CAR-T median Tmax was 10 d (range 8-14

d), median peak copy number (Cmax) was 127548 (16,011-374,346) copies/µg DNA with long

Median

96438

67970

178136

127548

Cmax (copies/µg DNA)

Min, Max

96438, 96438

16011, 272401

20068, 374346

16011, 374346

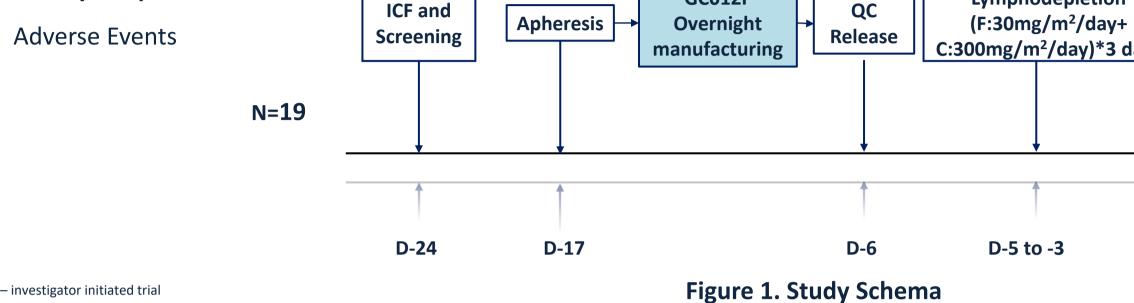
evaluable patients maintained MRD-sCR at landmark analysis of 6 months.

duration of persistence of up to 60 weeks at time of data cut off.

CAR-T Expansion and Persistence

DL1 (n=1)

DL2 (n=9)


DL3 (n=9)

All patients (N=19)

were evaluable for response. ORR was 94.7%-all response VGPR or better (94.7%-16/18 sCR, 2/18 VGPR) with all

Myeloma (IMWG criteria 2016) Expected survival ≥ 3 months

Adequate organ function **→** Primary endpoint:

➤ Secondary endpoints:

MRD at pre-specified timepoints post CAR-T infusion

GC012F

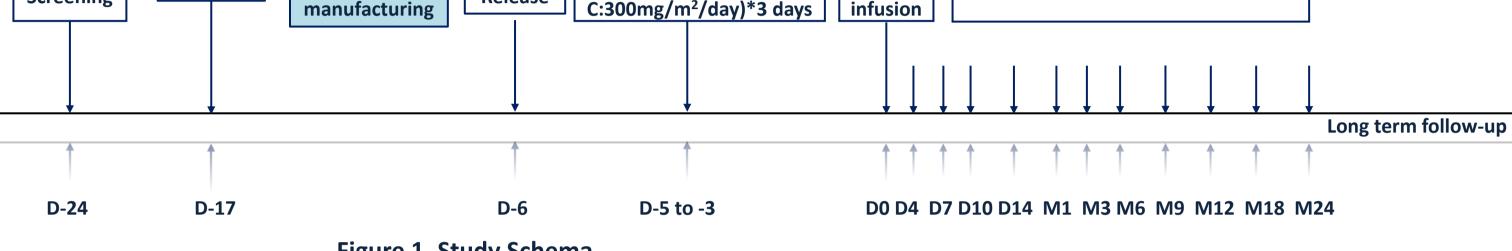
single

- ORR
- PFS, OS and DOR at 3 months and 6 months after CAR-T infusion

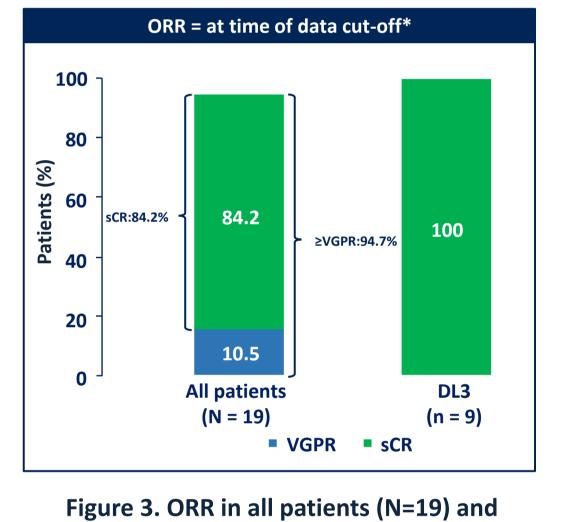
Follow up assessment visits

- PK of CAR-T cells

GC012F


MRD positive

MRD negative


VGPR

Death

→ Continued response

Efficacy: ORR

patients in DL3 (n=9)

*Data cut off as Jan 12th 2021

Efficacy: Tumor Burden Reduction

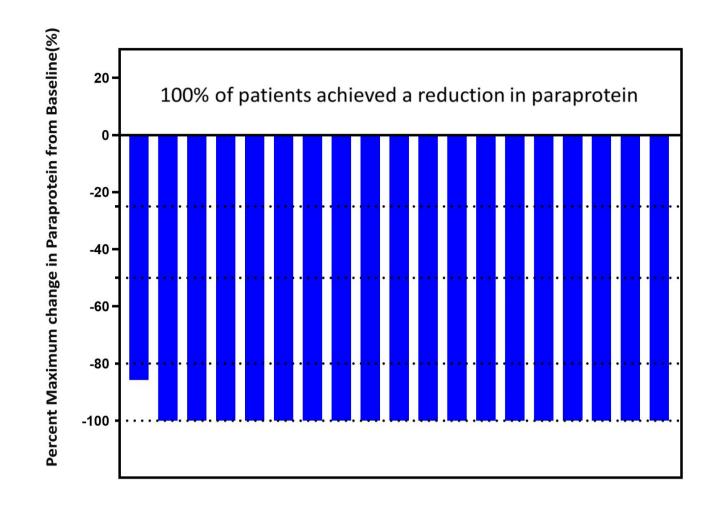


Figure 5. Maximum Reduction in Tumor Burden from Baseline in Response-Evaluable Patients (n=19).

Conclusion

♦GC012F shows very promising activity in R/R MM patients

- ✓ High Risk patients (18/19, 94.7%) as defined by mSMART 3.0
- ✓ Patients heavily pretreated including anti-CD38 mAb, PI, IMiD median of 5 prior lines of therapy
- **✓94.7% ORR- all VGPR or better (sCR)**
- √ 100% patients achieving sCR or VGPR as best response were evaluated to be MRD negative
- √ 100% MRD negative sCR rate in DL3 (n=9)

◆ Favorable safety profile

- ✓ CRS Grade 1/2 16/19 (84.2%), Grade 3 in 2/19 (10.5%) patients
- ✓ No CRS Grade 4/5 observed
- ✓ No ICANS observed
- ◆ Persistence of CAR-T shows a long duration of up to 60 weeks post CAR-T infusion (at time of data cut off)

Efficacy: MRD assessment

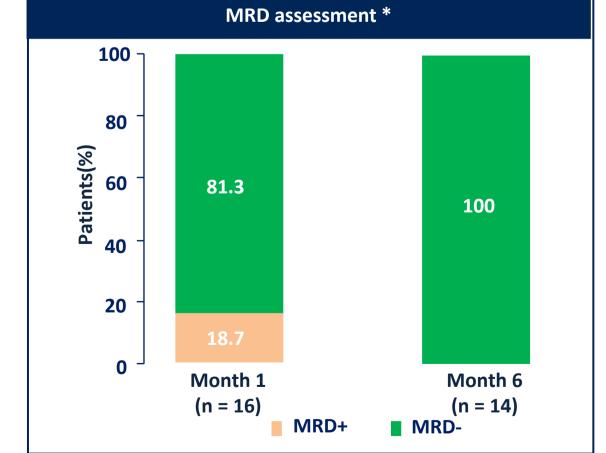


Figure 4. Minimal residual disease in evaluable patients at month 1 (n=16) and month 6 (n=14).

➤ All patients had at least one post-baseline bone marrow sample available for MRD assessment by NGF (Next Generation Flow)

➤ Time to earliest response: 28

 \triangleright ORR = 94.7% (18/19) patients

 \checkmark CR/sCR - 84.2% (16/19)

✓ VGPR or better – 94.7%

√ 9 out of 9 (100%) achieved

➤ Median duration of response

(DOR) not yet reached

(18/19)

sCR in DL3

➤ Best response achieved to

days

date

≥ 100% of evaluable patients were MRD negative at Month 6 (n=14)

*Sensitivity of MRD- At 10⁻⁴ in 7 patients tested by Flow cytometry • At 10⁻⁶ in 12 patients tested by EuroFlow

Acknowledgements

We would like to thank the patients, their families, the investigators and all the caregivers involved in this study.

References

1. Tai Y-T, Anderson KCJI. Targeting B-cell maturation antigen in multiple myeloma. *Immunotherapy*. 2015;7(11):1187–99.

2. Boucher K, Parquet N, Widen R, Shain K, Baz R, Alsina M, et al. Stemness of B cell progenitors in multiple myeloma bone marrow. Clin Cancer Res. 2012 Nov 15;18(22):6155–68.

3. Nerreter T, Letschert S, Götz R, Doose S, Danhof S, Einsele H, et al. Super-resolution microscopy reveals ultra-low CD19 expression on myeloma cells that triggers elimination by CD19 CAR-T. Nat Commun. 2019 Jul 17;10(1):3137.

4. Jiang H, Dong B, Gao L, Liu L, Ge J, He A, et al. Clinical Results of a Multicenter Study of the First-in-Human Dual BCMA and CD19 Targeted Novel Platform Fast CAR-T Cell Therapy for Patients with Relapsed/Refractory Multiple Myeloma. *Blood*. 2020;136(Supplement 1):25–6.

Contact Information

Contact E-mail: juan_du@live.com